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Abstract. Compatible discretizations transform partial differential equations to
discrete algebraic problems that mimic fundamental properties of the continuum equa-
tions. We provide a common framework for mimetic discretizations using algebraic
topology to guide our analysis. The framework and all attendant discrete structures are
put together by using two basic mappings between differential forms and cochains. The
key concept of the framework is a natural inner product on cochains which induces a
combinatorial Hodge theory on the cochain complex. The framework supports mutu-
ally consistent operations of differentiation and integration, has a combinatorial Stokes
theorem, and preserves the invariants of the De Rham cohomology groups. This allows,
among other things, for an elementary calculation of the kernel of the discrete Lapla-
cian. Our framework provides an abstraction that includes examples of compatible finite
element, finite volume, and finite difference methods. We describe how these methods
result from a choice of the reconstruction operator and explain when they are equivalent.
We demonstrate how to apply the framework for compatible discretization for two scalar
versions of the Hodge Laplacian.
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1. Introduction. Partial differential equations (PDEs) are ubiqui-
tous in science and engineering. A key step in their numerical solution is the
discretization that replaces the PDEs by a system of algebraic equations.
Like any other model reduction, discretization is accompanied by losses
of information about the original problem and its structure. One of the
principal tasks in numerical analysis is to develop compatible, or mimetic,
algebraic models that yield stable, accurate, and physically consistent ap-
proximate solutions. Historically, finite element (FE), finite volume (FV),
and finite difference (FD) methods have achieved compatibility by following
different paths that reflected their specific approaches to discretization.

Finite element methods begin by converting the PDEs into an equiv-
alent variational equation and then restrict that equation to finite dimen-
sional subspaces. Compatibility of the discrete problem is governed by
variational inf-sup conditions, which imply existence of uniformly bounded
discrete solution operators; see [6, 18, 46]. In finite volume methods the
PDEs are first replaced by equivalent integral equations that express bal-
ance of global quantities valid on all subdomains of the problem domain.
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The algebraic equations are derived by sampling balance equations on a fi-
nite set of admissible subdomains (the finite volumes). Their compatibility
is achieved by using the Stokes theorem to define the discrete differential
operators [32, 42, 44, 58]. Finite difference methods approximate vector and
scalar functions by discrete values on a grid and compatibility is realized
by choosing the locations of these variables on the grid [28, 33, 34, 51, 61].

In spite of their differences, compatible FE, FV, and FD methods can
result in discrete problems with remarkably similar properties. The obser-
vation that their compatibility is tantamount to having discrete structures
that mimic vector calculus identities and theorems emerged independently
and at about the same time in the FE, FV, and FD literature. For in-
stance in [14, 15, 16, 37] Bossavit and Kotiuga demonstrated connections
between stable finite elements for the Maxwell’s equations and Whitney
forms. In finite volume methods the idea of discrete field theory guided
development of covolume methods [42, 43, 44], while support operator and
mimetic methods [48, 50, 33, 34, 35, 36] combined the Stokes theorem with
variational Green’s identities to derive compatible finite differences. Alge-
braic topology was used to analyze mimetic discretizations by Hyman and
Scovel in [31] and more recently by Mattiussi [39], Schwalm et al. [47] and
Teixeira [53, 54]. Further research also revealed connections between some
compatible methods. For instance, mimetic FD for the Poisson equation
can be obtained from mixed FE by quadrature choice [12, 13, 19]. Another
example is the equivalence between a covolume method and the classical
Marker-and-Cell (MAC) scheme on uniform grids [43] and the analysis of
[39] that relates finite volume and finite elements by using the concept of
a “spread cell”.

This research helped to evolve and clarify the notion of spatial compat-
ibility to its present meaning of a discrete setting that provides mutually
consistent operations for discrete integration and differentiation that obey
the standard vector identities and theorems, such as the Stokes theorem.
It also highlighted the role of differential forms and algebraic topology in
the design and analysis of compatible discretizations. The recent work in
[2, 8, 9, 10, 22, 29, 30, 39, 44, 47, 52, 53, 58] and the papers in this vol-
ume further affirm that these tools are gaining wider acceptance among
mathematicians and engineers. For instance, FE methods that have tra-
ditionally relied upon nonconstructive variational [6, 18] stability criteria1

now are being derived by topological approaches that reveal physically rel-
evant degrees of freedom and their proper encoding. Of particular note are
the papers by Arnold et al. [4, 2] which develop stable finite elements for
mixed elasticity, and by Hiptmair [29], Demkowicz et al. [22] and Arnold et

1One exception in FEM was the Grid Decomposition Property (GDP), formulated
by Fix et al. [26], that gives a topological rather than variational stability condition
for mixed discretizations of the Kelvin principle derived from the Hodge decomposition.
The GDP is essentially equivalent to an inf-sup condition; see Bochev and Gunzburger
[7].
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al. [3] which define canonical procedures for building piecewise polynomial
differential complexes.

The key role played by differential forms and algebraic topology in
compatible discretizations is not accidental. Exterior calculus provides
powerful tools and concise formalism to encode the structure of many
PDEs and to expose their local and global invariants. For instance, in-
tegration of differential forms is an abstraction of the measurement pro-
cess, while the Stokes theorem connects differentiation and integration to
reveal global equilibrium relations. Algebraic topology, on the other hand,
supplies structures that mimic exterior calculus on finite grids and so is a
natural discretization tool for differential forms. The application of alge-
braic topology in modeling dates back to 1923 when H. Weyl [59] used it
to describe electrical networks. Other early works of note are Branin [17]
and in particular Dodziuk [24] whose combinatorial Hodge theory has great
similarity with mixed FE on simplices. However, these papers contained
few applications to numerical analysis. The first deliberate application of
algebraic topology to solve PDEs numerically is due to Tishkin et al. [55]
and Hyman and Scovel [31] who, drawing upon some of the ideas in [24],
used it to develop mimetic finite difference methods.

The present paper extends the approach originated in [31] to create a
general framework for compatible discretizations that includes FE, FV, and
FD methods as special cases. We first translate scalar and vector functions
to their differential form equivalents and consider the computational grid
to be an algebraic topological complex. The grid consists of 0-cells (nodes),
1-cells (edges), 2-cells (faces), and 3-cells (volumes) which combine to form
k-chains; k = 0, 1, 2, 3. For simplicity we focus on simplicial grids; however,
most of the developments easily carry over to general polyhedral domain
partitions.

All necessary discrete structures in our framework are put together
by two basic operations: a reduction map R and a reconstruction map
I, such that I is a right inverse of R. We take R to be the De Rham
map that reduces differential forms to linear functionals on chains, i.e.,
cochains. Therefore, discrete k-forms are encoded as k-cell quantities. For
differential forms, the operators Div, Grad and Curl are generated by the
exterior derivative d. Stokes theorem states that d is dual to the boundary
operator ∂ with respect to the pairing between forms and chains. To define
the discrete operators we mimic this property and use the duality between
chains and cochains. Thus, the discrete Div, Grad and Curl are generated
by the coboundary δ which is dual to ∂ with respect to this pairing.

The reconstruction map I translates cochains back to differential forms
and induces the natural inner product that is central to our approach.
This product gives rise to a derived adjoint δ∗, a discrete Laplacian −4 =
δδ∗ + δ∗δ and hence a combinatorial Hodge theory [25, 24]. By applying
a discrete version of Hodge’s theorem and De Rham’s theorem, we can
compute the size of the kernel of this Laplacian in an elementary way.
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The global (combinatorial) and the local (metric) properties of the dis-
crete models are determined by R and I, respectively. The discrete deriva-
tive, induced by R, is purely combinatorial and invariant under homeo-
morphisms. The adjoint δ∗ is induced by the inner product and depends
on the choice of I.

The present work, based on mappings between differential forms and
cochains, differs from other approaches that use differential forms and al-
gebraic topology to provide common frameworks for compatible discretiza-
tions. Most notably, we make the inner product on cochains the key concept
of our approach because it is sufficient to generate a combinatorial Hodge
theory. As a result, distinctions between compatible FE, FV, and FD meth-
ods arise from the choice of I and so equivalence of different models can be
established by comparing their reconstruction operators. In contrast, the
primary concept in [30, 52, 54] is the discrete ? operator. Different models
are distinguished by their choice of the discrete ? and its construction is
the central problem.

As an aside, we point out that developments in the FE literature focus
primarily on approximation of differential forms by piecewise polynomials
of arbitrary degree [1, 3, 22] and less on the equivalence between the dis-
crete models. Except in the lowest-order case, such spaces include degrees
of freedom that are not cochains and result in differential operators that
are not purely combinatorial. The main advantage of cochain encoding
used in this work is seen in the possibility to maintain a clear distinction
between the global and the local features in the discrete model. High-order
formulations on cochains are also possible by using an appropriate recon-
struction operator [32, 58]. Generally, reconstruction stencils for I grow,
which is seen as the principal drawback of this approach. However, the
number of degrees of freedom does not increase.

2. Differential forms. We review the basic concepts necessary for
the numerical framework. Given an n-dimensional vector space E and an
integer 0 ≤ k ≤ n , we denote by Λk the vector space of algebraic k-forms,
that is, all k-linear, antisymmetric maps2 ωk : E×. . .×E 7→ R; see [5]. The
subscript k in ωk will be used only when necessary to distinguish between
different forms. Dimension of Λk is Cn

k and the unique element ωn of Λn

is a volume form. We recall the wedge product ∧ : Λk × Λl 7→ Λk+l for
k+ l ≤ n with the property that ωk∧ωl = (−1)klωl∧ωk. An inner product
(·, ·) on E ×E induces an inner product (·, ·) on Λk ×Λk. The latter gives
rise to a unique metric conjugation operator ? : Λk 7→ Λn−k, defined by
the relation [23, 27]

ω ∧ ?ξ = (ω, ξ)ωn ∀ω, ξ ∈ Λk . (2.1)

Let TΩ denote the tangent bundle of a differentiable manifold Ω. A

2Equivalently, Λk can be defined as the dual of Λk - the space of all k-vectors; see
[23, 27].
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differential k-form on Ω is a map Ω 3 x 7→ ω(x) ∈ Λk(TxΩ), where TxΩ
is the tangent space at x. In what follows the set of all smooth k-forms
on Ω is denoted by Λk(Ω). The exterior derivative d : Λk 7→ Λk+1; k =
0, 1, . . . , n− 1 satisfies

d(ωk ∧ ωl) = (dωk) ∧ ωl + (−1)kωk ∧ (dωl) ; k + l < n (2.2)

and dd = 0 and therefore gives rise to an exact sequence

R ↪→ Λ0(Ω) d7−→ Λ1(Ω) d7−→ Λ2(Ω) d7−→ Λ3(Ω) 7−→ 0 (2.3)

called De Rham complex.
Integration operation for differential k-forms can be defined on k-

dimensional manifolds without any reference to a metric structure [5, 23].
The Stokes theorem ∫

∂Ω

ω =
∫

Ω

dω , (2.4)

expresses the classical Newton-Leibnitz, Gauss divergence, and Stokes cir-
culation theorems. As a corollary to this theorem and (2.2), we have, for
k + l + 1 = n, the integration by parts formula∫

∂Ω

ωk ∧ ωl =
∫

Ω

(dωk) ∧ ωl + (−1)k

∫
Ω

ωk ∧ (dωl) . (2.5)

On a Riemannian manifold Ω the metric tensor gij induces Euclidean
structure on TxΩ and inner product (·, ·) on Λk(TxΩ). The latter brings
about an L2 inner product on Λk(Ω) defined by

(ω, ξ)Ω =
∫

Ω

(ω, ξ)ωn . (2.6)

In view of (2.1), an equivalent definition is

(ω, ξ)Ω =
∫

Ω

ω ∧ ?ξ . (2.7)

The Hilbert spaces obtained by completion of smooth k-forms in the metric
induced by (2.6) will be denoted by Λk(L2,Ω).

It is also profitable to introduce the Sobolev spaces [3]

Λk(d,Ω) = {ω ∈ Λk(L2,Ω) | dω ∈ Λk+1(L2,Ω)} ,

of square integrable k-forms whose exterior derivative is also square inte-
grable.

The inner product (2.6) gives rise to an adjoint operator d∗ : Λk(Ω) 7→
Λk−1(Ω). Assuming that Ω is the whole manifold, or that one of the forms
has compact support, the adjoint is defined by

(dω, ξ)Ω = (ω, d∗ξ)Ω for all ω ∈ Λk−1(Ω) , ξ ∈ Λk(Ω) .
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The adjoint gives rise to the Hodge Laplacian −4k = dd∗ + d∗d, which is
a mapping Λk(Ω) 7→ Λk(Ω).

We assume that the boundary ∂Ω of domain Ω for the PDEs consists
of two disjointed, smooth, possibly empty boundary components Γ1 and
Γ2. At any boundary point a form can be decomposed into its tangential
and normal components, ω = ωt + ωn. If η is the inward pointing unit
covector, then ωn = g ∧ η where ?g = ?ω ∧ η. The Green’s formula

(dω, ξ)Ω − (ω, d∗ξ)Ω =
∫

∂Ω

ω ∧ ?ξ =
∫

∂Ω

ωt ∧ ?ξn (2.8)

follows from (2.4) and (2.5).
Let Λk

0(Ω) be the smooth k-forms ω such that

ωt = 0 on Γ1 and ωn = 0 on Γ2 . (2.9)

The boundary conditions imposed on Λk
0(Ω) imply that d∗ = (−1)k ? d?.

Thus, the adjoint has the property that d∗d∗ = 0. If the metric is the stan-
dard Euclidean metric, then the effect of d∗ on scalar and vector functions
is the same as that of d.

Using (2.8) we see that for ω, ξ ∈ Λk
0(Ω)

(−4kω, ξ)Ω = (dω, dξ)Ω + (d∗ω, d∗ξ)Ω .

The right-hand side in the above formula is the Dirichlet integral.
The relation between forms and vector and scalar functions in R3 is

determined as follows. Let {xi}3i=1 and {dxi}3i=1 denote the local coordi-
nates and their conjugates, respectively, that is, dxi(xj) = δij . A 0-form is
dual to zero-dimensional manifolds (points) and so it is a scalar function.
A 3-form is dual to three-dimensional manifolds (volumes) and so it has
the form

ω = φ(x)dx1 ∧ dx2 ∧ dx3 .

This defines a relation ω ↔ φ where φ is a scalar function. Therefore, 0-
and 3-forms can be identified with scalar functions. A 1-form is dual to
one-dimensional manifolds and can be written as

ω = u1(x)dx1 + u2(x)dx2 + u3(x)dx3 ,

while a 2-form is dual to two-dimensional manifolds and can be written as

ω = u1(x)dx2 ∧ dx3 + u2(x)dx3 ∧ dx1 + u3(x)dx1 ∧ dx2 .

This defines a relation ω ↔ u, between 1- and 2-forms and vector fields in
R3.

To emphasize correspondences between forms and fields, sometimes
we will write ωu or ωφ so that

dωφ
0 = ω∇φ

1 ; dωu
1 = ω∇×u

2 ; and dωu
2 = ω∇·u3 . (2.10)
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That is, exterior derivative of a 0−, 1−, 2−form is equivalent to applica-
tion of Grad, Curl, or Div, respectively, to the corresponding scalar or
vector field.

Furthermore, if ωu and ξv are two 1-forms, then the wedge product
ωu ∧ ξv is a 2-form with corresponding vector function u × v. If ηw is a
2-form, then the wedge ωu ∧ ηw is a 3-form with scalar function u ·w.

For the Hilbert spaces Λk(d,Ω) boundary conditions are imposed for
k = 0, 1, 2 either on Γ1 or Γ2 but not both at the same time. In this
paper we consider the spaces Λk

i (d,Ω) with boundary conditions on Γi; i =
1, 2. The correspondence (2.10) allows us to identify Λk(d,Ω), k = 0, 1, 2
with the Sobolev spaces H(Ω, grad), H(Ω, curl ), and H(Ω,div ) of square
integrable functions whose gradient, curl, and divergence are also square
integrable. With Λ3(d,Ω) ' L2(Ω) we have an L2 version of the De Rham
complex (2.3):

R ↪→ H(Ω, grad) ∇7−→ H(Ω, curl ) ∇×7−→ H(Ω,div ) ∇·7−→ L2(Ω) 7−→ 0. (2.11)

The spaces Λk
i (d,Ω) correspond to Sobolev spaces constrained by boundary

conditions on Γi:

Hi(Ω, grad) = {φ ∈ H(Ω, grad) | φ = 0 on Γi}
Hi(Ω, curl ) = {w ∈ H(Ω, curl ) | w × n = 0 on Γi}
Hi(Ω,div ) = {w ∈ H(Ω,div ) | w · n = 0 on Γi} .

They form a De Rham complex relative to Γi.

3. Algebraic topology. Our goal is to develop discrete structures
that support mutually consistent, mimetic notions of integral, derivative,
and inner product. The approach adopted in this paper is guided by alge-
braic topology and draws upon the ideas of [31]. This section reviews the
necessary basic concepts. For further details we refer the reader to Cairns
[21] or Flanders [27].

For brevity we restrict our attention to computational grids that are
triangulations of Ω by a simplicial complex. All discrete structures devel-
oped in this paper and their mimetic properties can be extended to general
polyhedral partitions of Ω such as considered in [38].

A k-simplex sk is an ordered collection [p0, . . . ,pk] of (k + 1), k ≤ n
distinct points in Rn such that they span a k-plane. A k-chain is a formal
linear combination

ck =
∑

i

ais
i
k

where ai are real constants and si
k are k-simplices. A set of k-chains is

denoted by Ck.
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Fig. 1. The boundary ∂ of a k-simplex is (k−1)-chain. The action of ∂ on a 3-cell
illustrates that ∂∂c3 = 0.

The boundary ∂ of a k-simplex is (k−1)-chain is defined by the formula

∂[p0, . . . ,pk] =
k∑

i=1

(−1)i[p0, . . . ,pi−1,pi+1, . . . ,pk] . (3.1)

A direct calculation shows that ∂∂ = 0. Boundary of a chain is defined
by linearity; see Fig. 1

∂c =
∑

i

ai∂c
i
k . (3.2)

The collection {C0, C1, C2, C3} is called complex if for any c ∈ Ck,
∂c ∈ Ck−1. This gives rise to an exact sequence

0←− C0
∂0←− C1

∂1←− C2
∂2←− C3 ←− 0 (3.3)

where ∂k : Ck+1 7→ Ck is the boundary operator on k-chains. The sequence
(3.3) is called exact since Range ∂k ⊂ Ker ∂k−1, which follows from ∂∂ = 0.

The geometric realization of a k-simplex [p0, . . .pk] is the map

ti 7→
k∑

i=0

tipi , where ti ≥ 0 and
k∑

i=1

ti = 1 .
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This map returns the convex hull of the points [p0, . . .pk]. The num-
bers ti are called barycentric coordinates, and they turn the complex
{C0, C1, C2, C3} into a metric space K. A triangulation of Ω is a home-
omorphism K 7→ Ω. Given K, we denote by L1 ⊂ K and L2 ⊂ K the
triangulations of Γ1 and Γ2.

The chain C0 is a collection of zero simplices, i.e., points. We re-
quire that these points be given an ordering. This ordering determines
an orientation for each k-simplex in K. A simplex [pi0 , . . . ,pik

] has posi-
tive orientation if π = {i0, . . . , ik} is an even permutation of the symbols
{0, . . . , k} and negative orientation otherwise. The subsets

Zk = {ck ∈ Ck | ∂k−1ck = 0} and
Bk = {bk ∈ Ck | bk = ∂kck+1 for ck+1 ∈ Ck+1}

of Ck are called k-cycles and k-boundaries, respectively. Because ∂∂ = 0,
Bk is a subgroup of Zk. The kth homology group of K over R, Hk(K,R) =
Zk/Bk contains all cycles that are not boundary chains.

The dual Ck is the collection of all linear functionals on Ck. The
elements of Ck are called k-cochains. We use the bracket notation 〈·, ·〉
to denote the duality pairing of chains and cochains. The adjoint of ∂,
δ : Ck 7→ Ck+1, defined by

〈a, ∂c〉 = 〈δa, c〉 (3.4)

satisfies δδ = 0 and forms an exact sequence

0 −→ C0 δ0−→ C1 δ1−→ C2 δ2−→ C3 −→ 0 , (3.5)

dual to (3.3). As before, we define the k-cocycles Zk, the k-coboundaries
Bk of Ck, and the kth cohomology group Hk(K,R) = Zk/Bk.

The collection {σi
k}, i = 1, 2, . . . of positively oriented k-chains forms

a basis for the chain complex. Since K is finite, Ck is finite dimensional
and isomorphic to Ck. The isomorphism J : Ck 7→ Ck is given by

Ja =
∑

i

〈a, σi
k〉σi

k . (3.6)

We identify σi
k with its dual so that 〈σi

k, σ
j
k〉 = δij . Then a cochain can be

written as a =
∑
aiσ

i
k and its action on a chain c =

∑
ciσ

i
k is given by

〈a, c〉 =
∑

i

aici .

From this, the coboundary operator is computed to be

δ[p0, . . . ,pk] =
∑
p

[p,p0, . . . ,pk]
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Fig. 2. The coboundary operator is defined by δ[p0, . . . ,pk] =
P

p[p,p0, . . . ,pk],

where the points [p,p0, . . . ,pk] form a (k + 1)-simplex, returns a cochain that contains
all (k + 1) simplices that have [p0, . . . ,pk] as part of their boundary. The action of δ
on a 1-cell illustrates that δδc1 = 0.

where the sum is over all points p such that [p,p0, . . . ,pk] is a (k + 1)-
simplex. In other words, the coboundary returns a cochain that contains
all (k + 1) simplices that have [p0, . . . ,pk] as part of their boundary; see
Fig. 2.

To accommodate boundary conditions, define the subspace Ck
i ⊂ Ck

to be the set of all k-cochains that vanish on Li, the triangulation of Γi:

Ck
i = {a ∈ Ck | 〈a, ck〉 = 0 ∀ck ∈ Li} ,

and Ck
0 to be the cochains that vanish on L1 ∪ L2. In a similar way we

construct the groups Zk
i , Bk

i and the kth relative cohomology group Hk
i =

Hk(K,Li,R).
We stress that geometrically Ck and Ck are distinct despite the isom-

porphism J . An element of Ck is a formal sum of k-simplices, whereas an
element of Ck is a linear function that maps elements of Ck into real num-
bers. This distinction also extends to the role of chains and cochains in the
discretization. The k-chains represent subsets of the nodes, edges, faces,
and cells in the grid. The k-cochains are the collections of real numbers
{ai} associated with these subsets. Therefore, the chains are the physical
objects that make the computational grid, while the cochains are the dis-
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crete functions that live on that grid. In particular, the proper way to store
scalar functions on the grid is as 0- or 3-cochains, while the proper way to
store vector fields is as 1- or 2-cochains.

4. Framework for mimetic discretizations. This section develops
structures for mimetic discretization of PDEs by using algebraic topology
and two basic operations. A reduction operator maps forms to cochains and
gives rise to combinatorial operations of differentiation and integration that
satisfy a Stokes theorem. A reconstruction operator translates cochains to
differential forms and is used to obtain the natural inner and wedge product
operations. The natural operations provide the derived analogues of the
adjoint d∗ and the Hodge Laplacian.

4.1. Basic operations.
Reduction. Information about physical quantities is obtained by mea-

suring. Integration of differential forms is an abstraction of this process and
motivates our choice of the De Rham map Λk(Ω) 7→ Ck for the reduction
operation. This map is defined by

〈Rω, c〉 =
∫

c

ω (4.1)

where c ∈ Ck is a k-chain and ω ∈ Λk(Ω) is a k-form. The mapping
ω 7→ Rω establishes discrete representation of k-forms in terms of global
quantities associated with a chain complex. Thus, we encode discrete k-
forms as k-cell quantities. The following property of R will prove useful in
the sequel.

Lemma 4.1. The De Rham map has the commuting diagram property
Rd = δR.

Proof. Using the Stokes formula (2.4) and the duality of ∂ and δ gives

〈Rdω, c〉 =
∫

c

dω =
∫

∂c

ω = 〈Rω, ∂c〉 = 〈δRω, c〉 . (4.2)

In what follows we refer to this property as CDP1, the first commuting
diagram.

Reconstruction. Central to our approach is the notion of an inner prod-
uct on cochains. Its natural definition requires an operation I that serves
as an approximate inverse toR and translates the global information stored
in Ck back to local representations. In contrast to R, where the De Rham
map (4.1) is the obvious candidate, the choice of I is flexible because of
the many possible ways in which global data from Ck can be combined in
a local field representation.

The operator I must satisfy two basic conditions. We will call a
bounded linear mapping I : Ck 7→ Λk(L2,Ω) an L2 mimetic reconstruction
operator if I is a right inverse of R (consistency property)

RI = id (4.3)
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and an approximate left inverse of that operator (approximation property)

IR = id+O(hs) , (4.4)

where s and h are positive real numbers that give the approximation order
and the partition size in K, respectively.

From (4.3) it follows that I is unisolvent in the sense that

Ker I = {0} . (4.5)

We require the range of I to contain square integrable k-forms and
(4.3) implies that these forms are continuous on the k-chains of the complex
K. However, they may be discontinuities along the m 6= k-cells of the
complex, or even within the k-cells of K, and so they may not belong to
Λk(d,Ω). For mimetic reconstruction operators I whose range is a subspace
of the Sobolev space Λk(d,Ω) we impose an additional condition that serves
to coordinate the action of the exterior derivative and the coboundary
operator. This condition takes the form of a second commuting diagram
property, CDP2,

dI = Iδ . (4.6)

We will call such mappings conforming mimetic reconstruction operators.
The Whitney map [60, 24, 31] is an example of a regular mimetic recon-
struction operator.

4.2. Discrete structures. For a mimetic reconstruction operator I,
the range of IR, considered as an operator Λk(d,Ω) 7→ Λk(L2,Ω), is a
subspace of Λk(L2,Ω) given by

Λk(L2,K) = {ωh ∈ Λk(L2,Ω) |ωh = IRω for some ω ∈ Λk(d,Ω)} . (4.7)

When I is a conforming operator, the range of IR is a subspace of Λk(d,Ω)
given by

Λk(d,K) = {ωh ∈ Λk(d,Ω) |ωh = IRω for some ω ∈ Λk(d,Ω)} . (4.8)

The spaces Λk
i (L2,K) and Λk

i (d,K) are defined similarly using Λk
i (d,Ω).

4.2.1. Combinatorial operations. These operations are induced by
the action of R and are completely independent of any metric structures.

Exterior derivative. Formula (2.10) shows that Grad, Curl and Div are
generated by the action of d on 0-, 1-, and 2-forms. Therefore, their discrete
versions will be generated by a discrete counterpart of d acting on 0-,1-,
and 2-cochains. To find the discrete version of d on K we note that forms
are dual to manifolds with respect to the pairing induced by integration
and that according to the Stokes theorem (2.4), d is the adjoint of ∂. To
define a discrete derivative we mimic this by using the duality of Ck and
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Ck and formula (3.4) which states that δ is dual to ∂. Thus, the discrete
Grad, Curl and Div are generated by the coboundary. The CDP1 property
asserts the consistency of this definition: The action of d on ω followed by
a reduction to cochain equals the reduction of ω to cochain followed by the
action of δ.

Integration. The integral of a ∈ Ck is defined on chains Ck by duality:∫
σ

a = 〈a, σ〉 ∀a ∈ Ck; σ ∈ Ck . (4.9)

4.2.2. Natural operations. These are defined by composition of I
and the desired analytic operation. Natural operations are the best imita-
tion of the analytic operations on cochains.

Inner product. The L2 inner product (2.6) on Λk(Ω) is the integral of
the inner product on Λk(TxΩ). We mimic this relationship by setting up
the local inner product

(a, b) def= (Ia, Ib) ∀ a, b ∈ Ck . (4.10)

The discrete L2 inner product on Ck is the integral of (4.10):

(a, b)Ω
def=

∫
Ω

(a, b)ωn ∀ a, b ∈ Ck . (4.11)

Unisolvency (4.5) of I guarantees that (4.10) and (4.11) are nondegenerate
and are indeed inner products.

Wedge product. The operation ∧ : Ck × Cp 7→ Cp+k is introduced by
using the wedge product of differential forms. Specifically, we set

a ∧ b = R(Ia ∧ Ib) ∀ a ∈ Ck ; b ∈ Cp . (4.12)

4.2.3. Derived operations. These operations are induced by the
existing natural operations.

The discrete adjoint. The inner product on Ck
0 induces an adjoint δ∗

of δ characterized by the identity

(δa, b)Ω = (a, δ∗b)Ω ∀ a ∈ Ck
0 ; b ∈ Ck+1

0 . (4.13)

The adjoint is a mapping Ck+1
0 7→ Ck

0 , has the property that δ∗δ∗ = 0, and
provides a second set of discrete Grad, Curl, and Div operations. In PDEs
modeling physical problems, often a vector function is associated naturally
with a 1-form or a 2-form, while a scalar function can be associated with
a 0-form or a 3-form. This identification determines whether the vector
function should be encoded in C1

0 or C2
0 and the scalar function in C0

0 or
C3. This in turn determines the discrete version of Div, Curl and Grad
to use.
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Hodge Laplacian. We define the discrete Laplacian D : Ck
0 7→ Ck

0 with
δ and its adjoint δ∗ as

−D = δ∗δ + δδ∗ (4.14)

to mimic −4 = d∗d+ dd∗.
Remark 4.1. Derived operations are needed to avoid internal incon-

sistencies between the discrete operations. Because I is only an approxi-
mate left inverse of R, some natural definitions with clash with each other.
For example, a natural counterpart of (4.13) mimics d∗ = (−1)k ? d? and
defines δ∗ = (−1)kR?d?I. Besides the fact that this requires I to be con-
forming, the real problem is that the natural δ∗ is not the adjoint of δ with
respect to the natural inner product (4.11). Indeed, from (4.4) and (4.6)

(δ∗a, b)Ω = (−1)k(IR ? d ? Ia, Ib)Ω = (−1)k(?d ? Ia, Ib)Ω +O(hs)

= (Ia, dIb)Ω +O(hs) = (Ia, Iδb)Ω +O(hs)

= (a, δb)Ω +O(hs) .

4.3. Mimetic properties. We now establish the mimetic properties
of the discrete operations.

Derivative and integral. In addition to δδ = δ∗δ∗ = 0, derivatives have
the following mimetic property.

Lemma 4.2. Assume that I is conforming and let ah = Ia, bh = Ib
for a ∈ Ck, b ∈ Ck+1. Then

(dah, bh)Ω = (δa, b)Ω and (ah, d
∗bh)Ω = (a, δ∗b)Ω . (4.15)

Proof. The first identity follows directly from CDP2 (4.6) and the
definition of the mimetic inner product. To prove the second identity we
use (4.6), (4.11), and that d∗ is the adjoint of d:

(ah, d
∗bh)Ω = (dah, bh)Ω = (dIa, Ib)Ω = (Iδa, Ib)Ω = (δa, b)Ω = (a, δ∗b)Ω .

The discrete Stokes theorem is a consequence of the identity

〈δa, σ〉 = 〈a, ∂σ〉 ∀a ∈ Ck; σ ∈ Ck+1 .

From (4.1), (4.3), and (4.9) we have the property∫
σ

a = 〈a, σ〉 = 〈RIa, σ〉 =
∫

σ

Ia . (4.16)
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Combinatorial Hodge theory. We recall the relative singular cohomol-
ogy of Ω over R:

H̄k
0 = Ker δ/Range δ on singular k-cochains that vanish on Γ1 ,

the De Rham cohomology:

H̄k = Ker d/Range d on Λk
1

and the De Rham theorem

H̄k ' H̄k
0 .

Let Hk(Ω) = {h ∈ Λk
0(Ω) |4h = 0}, the space of smooth harmonic k-

forms. The Hodge decomposition3 theorem [23] states that dim(Ker4k) =
dim(H̄k) and every ω ∈ Λk

0(Ω) has a decomposition

ω = df + h+ d∗g (4.17)

where f ∈ Λk−1
0 (Ω), g ∈ Λk+1

0 (Ω), and h ∈ Hk(Ω). In the vector calculus
this theorem implies that any vector function u has a decomposition u =
∇×w+∇φ+h where h is harmonic and φ is a scalar. It also implies that
any real function has the decomposition f = g+∇·v, where g is harmonic.

The kernel of the discrete Laplacian Hk(K) = {h ∈ Ck
0 | Dh = 0} is

the set of all harmonic cochains in Ck
0 . Its characterization mimics that of

Hk(Ω):

Hk(K) = {c ∈ Ck
0 | δc = δ∗c = 0} . (4.18)

Theorem 4.1. Every a ∈ Ck
0 has a decomposition

a = δb+ h+ δ∗c , (4.19)

where b ∈ Ck−1
0 , c ∈ Ck+1

0 and h ∈ Hk(K).
Theorem 4.1 is a consequence of δδ = 0 and the definition of δ∗ as the ad-
joint to δ. This is another important reason to choose the derived definition
(4.13) of δ∗ instead of the natural one in Remark 4.1.

To compute dim(KerD) we need the following result.
Lemma 4.3. The kernel of D is isomorphic to the kth relative coho-

mology group Hk
0 .

3This theorem is primarily a consequence of the fact that if T : V 7→ V is a bounded
linear operator on a Hilbert space V such that T 2 = 0, then

V = Range T ⊕ Range T ∗ ⊕H ,

where H = {x ∈ V |Tx = T ∗x = 0}. A simple proof is as follows. Define V ′ =
(Range T ⊕Range T ∗)⊥ and let x ∈ V ′. Then 〈Ty, x〉 = 0 and 〈T ∗y, x〉 = 0 for all y ∈ V
imply that Tx = T ∗x = 0 and x ∈ H. For T = d the proof is complicated by the fact
that d is an unbounded operator on a domain in L2.
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Proof. Note that if a = δb + h + δ∗c is in Ker(δk), then from δδ = 0
and (4.18)

0 = δa = δδb+ δh+ δδ∗c = δδ∗c .

This identity implies that (δ∗c, δ∗c) = 0 and hence δ∗c = 0. Thus, if δa = 0,
then a = h + δb, and the correspondence a ↔ h provides an isomorphism
Ker δ/Range δ 7→ KerD.

Corollary 4.1. The size of the kernels of the analytic and discrete
Laplacians is the same.

Proof. From Lemma 4.3 it follows that

dim (KerDk) = dimHk
0 .

Furthermore, dim(Hk
0) = dim(H̄k

0) (Cairns [21]) and dim(H̄k
0) =

dim(H̄k) (De Rham’s theorem). The assertion follows from dim(H̄k) =
dim(ker4k).

It is remarkable that the size of the kernel of the analytic and discrete
Laplacians depends only upon the topology of the domain and not the
specific nature of these Laplacians.

Natural inner product. The definition of the discrete L2 product (4.11)
mimics definition (2.6). Using (4.10) we find that this inner product has
the property that

(a, b)Ω =
∫

Ω

(a, b)ωn =
∫

Ω

(Ia, Ib)ωn =
∫

Ω

Ia ∧ ?Ib ,

which mimics the property (2.7) of the analytic inner product.
Vector calculus. The discrete versions of the vector calculus identities

hold exactly for the discrete operators defined by δ and δ∗.
Lemma 4.4. The discrete versions of Grad, Curl, and Div satisfy

CurlGrad ≡ 0 and DivCurl ≡ 0
Proof. For the two discrete derivatives the identities are δδ = 0 and

δ∗δ∗ = 0. The first follows by duality of chains and cochains:

〈δδa, b〉 = 〈δa, ∂b〉 = 〈a, ∂∂b〉 = 0

The second follows by the duality of δ and δ∗ with respect to the discrete
inner product:

(δ∗δ∗a, b)Ω = (δ∗a, δb)Ω = (a, δδb)Ω = 0 .

As a corollary to this Lemma we also have a discrete version of Poincaré’s
lemma which states that on a contractable domain every closed form is a
differential. The discrete version of this lemma is that every cocycle is a
coboundary. Therefore, on contractable domains we have existence of dis-
crete potentials. This mimetic property can be used to transfer solenoidal
fields between two different cell complexes [11] and gauge discrete prob-
lems [15].
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The wedge product. We show that (4.12) has the same commutation
property as the true wedge product. If I is also conforming, then the effect
of δ on (4.12) is algebraically the same as that of the exterior derivative on
forms, and so properties of the discrete wedge and the discrete derivative
are properly coordinated.

Lemma 4.5. Let ∧ : Ck × Cp 7→ Ck+p be defined by (4.12). Then

a ∧ b = (−1)kpb ∧ a , (4.20)

and if I is conforming mimetic reconstruction,

δ(a ∧ b) = δa ∧ b+ (−1)ka ∧ δb (4.21)

for all a ∈ Ck and b ∈ Cp.
Proof. The commutation identity (4.20) follows directly from (4.12)

and the like property of forms. The second identity is a consequence of the
CDP1 property of R and the CDP2 property of I:

δ(a ∧ b) = δR(Ia ∧ Ib) CDP1= Rd(Ia ∧ Ib)
= R(dIa ∧ Ib) + (−1)kR(Ia ∧ dIb)

CDP2= R(Iδa ∧ Ib) + (−1)kR(Ia ∧ Iδb)
= δa ∧ b+ (−1)ka ∧ δb .

The wedge product is nonassociative: (a ∧ b) ∧ c 6= a ∧ (b ∧ c).

4.4. Discrete ?. In this section we discuss complications arising in
the construction of a discrete ? operation and explain why it is not among
the discrete operations that comprise our mimetic framework.

A natural discrete ? operation uses I to translate cochains to forms,
applies the analytic ? and then reduces the result back to cochains. Thus,
a natural operator

N

?: Ck 7→ Cn−k is defined by

N

?= R ? I . (4.22)

Tarhasaari et al [52] proposed this formula for a primal-dual cell complex.
The derived discrete ? is defined in terms of the existing natural op-

erations. We use the inner product (4.11) and the wedge product (4.12) to
mimic4 (2.7) and define

D

?: Ck 7→ Cn−k by the formula∫
Ω

a∧ D

? b = (a, b)Ω ∀ a, b ∈ Ck . (4.23)

In Section 5 we show that the derived ? is related to an algebraic definition
proposed by Hiptmair [30].

4The discrete ? acts on cochains and is a global operation. Thus, we mimic the global
relation (2.7) instead of the local formula (2.1) which defines the analytic ? locally.
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Lemma 4.6. The operator
N

? has a commuting diagram property on
the range of IR, that is

N

? Rωh = R ? ωh ∀ωh ∈ Λk(L2,K) . (4.24)

Proof. From (4.7) we know that any ωh ∈ Λk(L2,K) has the form
ωh = IRω for some ω ∈ Λk(d,Ω). Using this characterization and the fact
that RI = id gives

(
N

? R)ωh = (
N

? R)(IRω) = (R ? I)(RI)(Rω) = (R?)(IRω) = (R?)ωh .

Lemma 4.7. The operator
D

? has a weak commuting diagram property
on Ck: ∫

Ω

IR(Ia ∧ I D

? a) =
∫

Ω

Ia ∧ ?Ia . (4.25)

Proof. Using (4.16) and (4.12)∫
Ω

a∧ D

? a =
∫

Ω

I(a∧ D

? a) =
∫

Ω

IR(Ia ∧ I D

? a) ,

which is the left-hand side in (4.25). Using (4.11) and (2.7)

(a, a)Ω = (Ia, Ia)Ω =
∫

Ω

Ia ∧ ?Ia ,

which is the right-hand side in (4.25).
Similar arguments can be used to show that∫

Ω

a∧ N

? a = (a, a)Ω +O(hs) , (4.26)

which implies that
D

? − N

?= O(hs). Formula (4.26) also means that the
natural operator

N

? is not compatible with the natural inner and wedge
product definitions, while (4.24) means that it is compatible with the re-
duction map R. Exactly the opposite is true for the derived operator

D

?.
By construction this operator is compatible with the natural inner product
and the natural wedge product but is incompatible with R and I. Finally,
neither

N

?, nor
D

? is compatible with the derived adjoint δ∗ defined in (4.13).
The problems with the discrete ? operation arise from the fact that

its action must be coordinated with two natural operations. The natural
definition fails to accomplish this, while forcing the discrete ? into com-
pliance with the two natural operations leads to other incompatibilities.
In contrast, an operation like δ∗ requires a single natural operation for its
definition and has a “built-in” compatibility with that operation.



PRINCIPLES OF MIMETIC DISCRETIZATIONS 107

These observations show that if a discrete ? operation is required, then
it must be made the primary object of the discrete framework and then
used to define all other necessary structures. However, construction of a
good discrete ? is nontrivial and more difficult than the construction of a
good inner product. For instance, the analytic ? is local and invertible. To
mimic this in finite dimensions the discrete ? must be given by a diagonal
matrix with positive entries. This is impossible unlessK has a dual complex
K̃ such that Ck is isomorphic5 to C̃n−k. In all other cases, the discrete ?
will be a rectangular matrix.

As a rule, the need for a discrete ? arises from discretization of mate-
rial laws. Because of the difficulties with this operator, we prefer to either
incorporate these laws in the inner product or to enforce them in a weak,
L2 sense. In the first case we work with δ∗ and in the second we solve a
constrained optimization problem. These alternatives to a discrete ? offer
several valuable advantages. Besides being sufficient for a combinatorial
Hodge theory, the inner product gives rise to a symmetric and positive
semidefinite Laplacian. In contrast, direct discretization of material laws
by an independently defined discrete ? and the subsequent formation of the
Laplacian through this operation may lead to operators that have imagi-
nary and/or negative eigenvalues with the attendant stability problems; see
[49] for examples in computational electromagnetism. On the other hand,
the weak enforcement of the material laws is justified by their approximate
nature as summaries of complex interactions.

In summary, the natural inner product leads to well-behaved discrete
structures and is much easier to construct than a good discrete ? opera-
tor. Choosing the inner product to be the primary discrete operation will
also mimic the analytic case where the ? operator is induced by the inner
product, but not vice versa.

5. Algebraic realizations. Let mk = dimCk
0 . The map

a =
mk∑
i=1

aiσ
i
k 7→ a = (a1, . . . , amk

)

establishes an isomorphism Ck
0 7→ Rmk . Then R can be viewed as a map

Λk
0(Ω) 7→ Rmk , defined by

a = Rω if and only if ai =
∫

σi
k

ω ,

while I is an approximate inverse of this map. As a result, all mimetic op-
erations on cochains can be realized by matrices acting on their coefficient

5It is worth pointing out that when C̃n−k and Ck have the same dimension, the
covolume reconstruction operator gives rise to an inner product that is compatible with
a diagonal discrete ?; see [44, 45, 58]. Thus, in this case, explicit definition of a discrete
? operation can also be avoided.
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vectors. The action of δ : Ck
0 7→ Ck+1

0 is given by a matrix Dk ∈ Rmk+1×mk

with the property that Dk+1Dk = 0. This matrix has elements -1, 0, and 1
which reflect the combinatorial nature of the discrete derivative δ

The local and the L2 inner products on Ck
0 are associated with the

symmetric and positive definite matrices Mk(x),Mk ∈ Rmk×mk such that

(a, b) = aT Mk(x)b and (a, b)Ω = aT Mkb , (5.1)

respectively.
The action of δ∗ is given by a matrix D∗k ∈ Rmk×mk+1 . Since δ∗ is

derived from δ and the natural inner product, it follows that D∗k can be
expressed in terms of the matrices that represent these operations. From

aT (D∗k+1)
T Mkb = (δ∗k+1a, b)Ω = (a, δkb)Ω = aT Mk+1Dkb

we see that D∗k+1 = M−1
k DT

k Mk+1 and

D∗kD∗k+1 = M−1
k−1DT

k−1MkM−1
k DT

k Mk+1 = M−1
k−1DT

k−1DT
k Mk+1 = 0 ,

as expected from a derivative.
The discrete Laplacian Dk is also a derived operation and its action is

given by the matrix

Lk = (M−1
k DT

k Mk+1Dk + Dk−1M−1
k−1DT

k−1Mk) ∈ Rmk×mk .

We have the formula

(δ∗k+1δka, b) = aT DT
k (M−1

k DT
k Mk+1)T Mkb = aT DT

k Mk+1Dkb = (δka, δkb)

and a similar formula for (δk−1δ
∗
ka, b).

To find a matrix expression for the wedge product ∧ : C1
0 × C1

0 7→ C2
0

we use the formula

a1 ∧ b1 = R(Ia1 ∧ Ib1) =
m2∑
i=1

ciσ
i
2

and the commutation property (4.20) to conclude that each coefficient ci is
a skew-symmetric bilinear form of the coefficient vectors a and b. There-
fore, ci is given by a skew-symmetric matrix Wi

11 ∈ Rm1×m1 and

a1 ∧ b1 =
m2∑
i=1

(aT Wi
11b)σi

2 .

For ∧ : C1
0 × C2

0 7→ C3
0 and ∧ : C2

0 × C1
0 7→ C3

0 we have the formulas

a1∧b2 = R(Ia1∧Ib2) =
m3∑
i=1

c12i σ
i
3 and b2∧a1 = R(Ib2∧Ia1) =

m3∑
i=1

c21i σ
i
3 ,
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respectively. The coefficients c12i and c21i are bilinear functions of a and
b and so they are given by matrices Wi

12 ∈ Rm1×m2 and Wi
21 ∈ Rm2×m1 ,

respectively. From (4.20) it follows that Wi
12 = (Wi

12)
T and

a1 ∧ b2 =
m3∑
i=1

(aT Wi
12b)σi

3 and b2 ∧ a1 =
m3∑
i=1

(bT (Wi
12)

T a)σi
3 . (5.2)

Matrix representations for the remaining two wedge products follow in a
similar fashion. From (5.1) and (5.2) we can obtain a matrix representation
for

D

?: C1
0 7→ C2

0 . Using (5.2) and definition (4.9) the matrix form of the
left hand side in (4.23) is∫

Ω

a∧ D

? a = 〈a∧ D

? a,

m3∑
i=1

σi
3〉 =

m3∑
i=1

aT Wi
12(

D

? a)〈σi
3, σ

i
3〉 =

m3∑
i=1

aT Wi
12(

D

? a)µi

where
D

? a ∈ Rm2 is the coefficient vector of
D

? a and µi = 〈σi
3, σ

i
3〉 is the

volume of the ith basis 3-cell. The matrix form of the right hand side in
(4.23) is

(a, a)Ω = aT M1a .

Let W12 =
∑m3

i=1 µiWi
12. Then, the matrix form of (4.23) is

W12(
D

? a) = M1a . (5.3)

This formula reflects the fact that the derived operator
D

? relies on two
natural operations and so is associated with a pair of matrices related
to these operations. A formula similar to (5.3) was used in [30] for an
axiomatic definition of a discrete ? operation.

Algebraic realizations of the mimetic operations are summarized in
Table 1.

6. Examples of reconstruction operators. For simplicity we
present examples of reconstruction operators in two-dimensions and re-
strict attention to operators that translate 1-cochains to 1-forms. We will
consider three operators I : C1 7→ Λ1(L2,Ω), one of which will be conform-
ing. To explain the action of these operators it suffices to consider a space
C1 consisting of a single 1-chain c1 =

∑3
i=1 c

i
1 which is a boundary of a

2-simplex c2 that forms the space C2. In two dimensions c2 is a triangle
and the 1-cells {ci1} are its edges. Two edges, ci1 and cj1, intersect at a
vertex ck0 , k 6= i, j. The set {ck0} forms the space C0.

Using the isomorphism (3.6), the elements of C1 can be written as
c1 =

∑3
i=1 aic

i
1 where ai =

∫
ci
1
ω for some ω ∈ Λ1(d,Ω). The value of

ai gives the circulation of the vector field u, associated with ω, along the
edge ci1.
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Table 1
Algebraic realizations of mimetic operations.

Operation Matrix form Type

δ Dk incidence matrix

(·, ·) Mk SPD

a1 ∧ b1
∑

W11 skew symmetric

a1 ∧ b2
∑

W12 W12 =

b2 ∧ a1
∑

W21 WT
21

δ∗ M−1
k DT

k Mk+1 rectangular

D M−1
k DT

k Mk+1Dk + Dk−1M−1
k−1DT

k−1Mk square
D

?: C1 7→ C2 (W12,M1) pair

Covolume reconstruction. To define the covolume reconstruction oper-
ator [58] the simplex c2 is divided into three subsimplices ci2 by connecting
the circumcenter of c2 with its vertices ci0 as shown in Fig. 3. Each subsim-
plex is bordered by exactly one of the edges ci1; we denote that subsimplex
by ci2.

The covolume reconstruction operator maps the 1-cochain c1 into a
1-form ωu whose associated vector field u is piecewise constant on each
subsimplex, determined according to the rule

u|ci
2

= aic
i
1; i = 1, 2, 3 . (6.1)

The range of the operator defined in (6.1) is in the Hilbert space Λ1(L2,Ω)
but not in the Sobolev space Λ1(d,Ω). Therefore, covolume reconstruction
is not conforming. A unique property of covolume reconstruction is that
derived operators have local stencils and that there is a discrete ? star
operation that is compatible with the natural inner product [58]. As a
result, the matrix M that gives the action of the natural inner product is
diagonal

M =


h1h

⊥
1 0 0

0 h2h
⊥
2 0

0 0 h3h
⊥
3

 . (6.2)

In (6.2) hi is the length of ci1 and h⊥i is the length of the perpendicular
from the circumcenter to ci1.

These properties follow from the fact that covolume reconstruction
can be associated with cochains on a Voronoi-Delaunay grid complex; see
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Fig. 3. The reconstruction operators are shown for the 1-cochains: covolume,
mimetic, and Whitney, respectively. In the first figure, the covolume reconstruction
operator divides the simplex into three subsimplices by connecting the circumcenter of
with its vertices. Each subsimplex is bordered by exactly one of the edges. The covolume
reconstruction operator maps the 1-cochain into a 1-form whose associated vector field
is piecewise constant on each subsimplex. In the second figure, mimetic reconstruction
acts in a similar way to recover a form with a piecewise constant vector field. In the
mimetic approach, the subregions are associated with the vertices, have quadrilateral
shapes, and are bordered by the edges adjacent to each vertex. The third figure of the
Whitney map is an example of a regular mimetic reconstruction operator. In contrast to
the previous two reconstruction operators, the Whitney map builds a polynomial 1-form
from the cochain using a basis of polynomial 1-forms associated with the edges.

[42, 44, 58]. This association also implies that existence of the covolume
reconstruction is contingent upon the existence of the Voronoi regions and
so the simplexes must satisfy an angle condition [44].

Mimetic reconstruction. Mimetic reconstruction [33] acts in a similar
way to recover a form ωu whose associated vector field u is a piecewise
constant on c2. As a result, the reconstructed form is in the Hilbert space
Λ1(L2,Ω) but not in the Sobolev space Λ1(d,Ω). The main difference
between covolume and mimetic reconstruction is in the choice of the sub-
regions. In the mimetic approach, the subregions are associated with the
vertices ck0 of c2, have quadrilateral shapes, and are bordered by the edges
ci1 and cj1, i, j 6= k; see Fig. 3. Each subregion is determined by connecting
the midpoint of ci1 with an arbitrary but fixed point inside the triangle. We
denote the subregion associated with the vertex ck0 by qk

2 and its area by Vk.
The mimetic reconstruction operator builds on c2 the following piecewise
constant field:

u|qk
2

= aic
i
1 + ajc

j
1; k = 1, 2, 3; i, j 6= k . (6.3)

Mimetic reconstruction is less restrictive than the covolume I because ex-
istence of the subregions is not contingent upon the circumcenter being
inside the triangle. However, mimetic reconstruction gives rise to nonlocal
derived operators [34]. If φk is the angle associated with the vertex ck0 , the
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inner product matrix on c2 is given by

M =

0BBBBBB@

V2

sin2 φ2
+

V3

sin2 φ3

V3 cos φ3

sin2 φ3

V2 cos φ2

sin2 φ2

V3 cos φ3

sin2 φ3

V1

sin2 φ1
+

V3

sin2 φ3

V1 cos φ1

sin2 φ1

V2 cos φ2

sin2 φ2

V1 cos φ1

sin2 φ1

V1

sin2 φ1
+

V2

sin2 φ2

1CCCCCCA . (6.4)

Whitney reconstruction. The Whitney map [24, 60] is an example of
a conforming reconstruction operator whose range is in the Sobolev space
Λ1(d,Ω). In contrast to the previous two reconstruction operators, the
Whitney map builds a polynomial 1-form on c2 from the cochain c1 using a
basis of polynomial 1-forms associated with the edges ci1. The basis 1-forms
are defined by the formula

ωk = tidtj − tjdti; i, j 6= k, i < j , (6.5)

where ti are the barycentric coordinates. The vector field corresponding to
the basis 1-form is given by

uk = ti∇tj − tj∇ti; i, j 6= k, i < j .

Therefore, the Whitney reconstruction map translates the cochain c1 to
the 1-form ω1 =

∑3
k=1 akωk with a vector field

u =
3∑

k=1

ak(ti∇tj − tj∇ti) . (6.6)

The reconstructed image of c1 is in the smooth space Λ1(Ω). When K
consists of more than one 2-simplex, the range of the Whitney map contains
piecewise polynomial 1-forms obtained by gluing together the reconstructed
images from the individual triangles. It is possible to show [24] that the
resulting 1-forms are in the Sobolev space Λ1(d,Ω).

7. Application to PDEs. We consider mimetic discretizations of
the elliptic boundary value problems −40φ = f

φ = 0 on Γ1

n · ∇φ = 0 on Γ2

and

 −43ψ = f
n · ∇ψ = 0 on Γ1

ψ = 0 on Γ2

(7.1)

respectively. Note that −40 = d∗d and −43 = dd∗. To better illustrate
the formation of the discrete mimetic equations we use equivalent first-order
formulations of (7.1):

dφ− u = 0
d∗u = f
φ = 0 on Γ1

n · u = 0 on Γ2

and


d∗ψ − v = 0

dv = f
n · v = 0 on Γ1

ψ = 0 on Γ2

. (7.2)
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In (7.2) the variables acted upon by d, their boundary conditions, and the
equations involving d are called primal. The other variables, boundary
conditions and equations, are called dual.

7.1. Direct mimetic discretization. In the direct approach we use
that d and R commute and apply R to translate the primal equation and
boundary condition to combinatorial cochain equations. Reduction of the
primal equation fixes the type of cochains in the discrete model. The
discrete primal equation is uniquely determined by the mesh topology of the
triangulationK and does not require a reconstruction operator I. However,
this operator is needed for the discretization of the dual equation. Because
R and d∗ do not commute, the discrete dual equation cannot be obtained
by an application ofR. Instead, we derive it by using the discrete adjoint δ∗

to mimic the analytic dual. Therefore, the discrete dual equation depends
on the choice of the reconstruction map I and is not unique. Note that I
is only needed to induce the adjoint and does not have to be a conforming
reconstruction operator.

For 40 the primal variable φ is 0-form and the dual variable u is 1-
form. We approximate them by φ0 = Rφ ∈ C0

1 and u1 = Ru ∈ C1. For
43 the primal variable v is a 2-form v and the dual variable is a 3-form ψ.
They are approximated by v2 = Rv ∈ C2

1 and ψ3 = Rψ ∈ C3, respectively.
Applying R to the primal equations in (7.2) and using CDP1 gives

0 = R(dφ− u) = δRφ−Ru = δφ0 − u1 and
0 = R(dv − f) = δRv −Rf = δv2 − f3 ,

respectively. Hence, the direct mimetic models for 40 and 43 are{
δφ0 − u1 = 0

δ∗u1 = f0
and

{
δ∗ψ3 − v2 = 0

δv2 = f3
, (7.3)

respectively. In (7.3) the primal boundary conditions on Γ1 constrain the
spaces for the primal variables. The boundary conditions on Γ2 are enforced
weakly through the definition of δ∗ as adjoint to δ.

The methods in (7.3) can be realized using any one of the three recon-
struction operators (6.1), (6.3), or (6.6). With the covolume reconstruction
the derived adjoint δ∗ has local stencil and (7.3) is equivalent to a finite
volume method on Delaunay-Voronoi grid complex. With the mimetic and
Whitney reconstructions the stencil of δ∗ is not local. For these two opera-
tors (7.3) is a conservative finite difference scheme on an unstructured grid.

If u1 and v2 are eliminated from (7.3) we obtain the equations

δ∗δφ0 = f0 and δδ∗φ3 = f3 (7.4)

that represent direct discretizations of the equations in (7.1) by the discrete
Laplace operators D0 = δ∗δ and D3 = δδ∗.
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7.2. Conforming mimetic discretization. In the conforming ap-
proach, the analytic equations are restricted to finite dimensional spaces in
the range of IR. In contrast to the direct approach, where only discrete
derivatives are used, this requires I to be conforming. Assuming that such
I is given, we approximate φ and u by φh

0 ∈ Λ0
1(d,K) and uh

1 ∈ Λ1(d,K),
respectively. For ψ and v the approximations are ψh

3 ∈ Λ3(K) and
vh

2 ∈ Λ2
1(d,K). The conforming discretizations of (7.2) are given by{
dφh

0 − uh
1 = 0

d∗uh
1 = fh

0
and

{
d∗ψh

3 − vh
2 = 0

dvh
2 = fh

3
, (7.5)

respectively, where fh
0 = IRf and f3

h = IRf .
In contrast to the direct methods in (7.3), the methods in (7.5) cannot

be realized by the covolume or the mimetic reconstruction operators be-
cause they are not conforming. However, for (7.5) we can use the Whitney
map (6.6). In this case, the scheme where the scalar is the primal variable
reduces to the familiar Galerkin finite element method in which the scalar
is approximated by continuous, piecewise linear polynomial finite elements
on simplices. The second scheme, where the scalar is the dual variable,
reduces to a mixed Galerkin method in which the scalar is approximated
by a piecewise constant and the vector is approximated by the lowest order
Raviart-Thomas spaces [18, 46]. For this reason we will call the schemes
in (7.5) Galerkin and mixed Galerkin, respectively. The Whitney map has
been extensively used in computational electromagnetism where it gives
rise to the lowest-order Nedelec edge elements [14, 29, 40, 41].

Theorem 7.1. Assume that I is a conforming reconstruction opera-
tor, then the direct and the conforming mimetic models are equivalent.

Proof. We give the details for 40; the proofs for 43 are very similar.
For φh

0 ∈ Λ0
1(d,K) and uh

1 ∈ Λ1(d,K) there exist φ ∈ Λ0
1(d,Ω) and u ∈

Λ1(d,Ω), such that φh
0 = IRφ and uh

1 = IRu, respectively. Using (4.6)

0 = dφh
0 − uh

1 = d(IRφ)− IRu = IδRφ− IRu
= I(δRφ−Ru) = I(δφ0 − u1) ,

where φ0 = Rφ and u1 = Ru. From (4.5) we conclude that δφ0 − u1 = 0,
that is, the degrees of freedom of φh

0 and uh
1 solve the direct equation. To

prove equivalence of the dual equations note that for ξ0 ∈ C0
1 - arbitrary,

and ξh
0 = Iξ0 formula (4.15) implies the identity

(d∗uh
1 , ξ

0
h)Ω = (δ∗u1, ξ0)Ω

while definition of fh
0 and the L2 inner product give that

(f0
h , ξ

0
h)Ω = (IRf, Iξ0)Ω = (Rf, ξ0)Ω = (f0, ξ0) .

Combining the two equations shows that

(δ∗u1, ξ0)Ω = (f0, ξ0) ∀ξ0 ∈ C0
1 or δ∗u1 = f0 .
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Therefore, uh
1 solves d∗uh

1 = fh
0 if and only if u1 solves the direct dual

equation δ∗u1 = f0.
From this theorem we can conclude that realizations of the direct

scheme (7.3) and the conforming scheme (7.5) by the Whitney map lead
to two completely equivalent discretizations of the PDEs (7.2). Further
connections between direct and conforming methods can be established by
choosing specific quadrature points to compute the integrals in the conform-
ing method [12, 13, 19]. Note that quadrature selection can be interpreted
as yet another choice for the reconstruction operator.

7.3. Mimetic discretization with weak material laws. The first-
order systems in (7.2) can be combined into a single problem by keeping
the two primal equations and adding the constitutive laws

u = ?v and ψ = ?φ (7.6)

that express the dual variables in terms of the primal variables. We write
the new system as{

dφ− u = 0
dv + gψ = f

and
u = ?v
ψ = ?φ

(7.7)

where g is a function that can be identically zero; see [15, 14, 30, 56,
57] for discussions of such factorization diagrams. Instead of trying to
approximate (7.7), which would require us to deal with the material laws
and a discrete ? operation, we first transform this system into an equivalent
constrained optimization problem and then discretize that problem. Let

J (φ,u;ψ,v) =
1
2

(
‖ψ − ?φ‖2 + ‖u− ?v‖2

)
.

The optimization problem: find (φ,u) ∈ Λ0
1(Ω) × Λ1(Ω) and (ψ,v) ∈

Λ3(Ω) × Λ2
1(Ω) such that for all (φ̂, û) ∈ Λ0

1(Ω) × Λ1(Ω) and (ψ̂, v̂) ∈
Λ3(Ω)× Λ2

1(Ω)

J (φ,u;ψ,v) ≤ J (φ̂, û; ψ̂, v̂)

subject to dφ̂− û = 0 and dv̂ + gψ̂ = f
(7.8)

is an equivalent to (7.7). We use this optimization problem to devise di-
rect and conforming mimetic methods in which material laws are enforced
weakly and no explicit construction of a discrete ? operation is required.

The idea is to approximate the four variables in (7.8) by the same
cochains as in (7.3) or by the same conforming spaces as in (7.5). In the
first case we have the constrained optimization problem find (φ0,u1) ∈
C0

1 × C1 and (ψ3,v2) ∈ C3 × C2
1 such that for all (φ̂0, û1) ∈ C0

1 × C1 and
(ψ̂3, v̂2) ∈ C3 × C2

1

J (φ0,u1;ψ3,v2) ≤ J (φ̂0, û1; ψ̂3, v̂2)

subject to δφ̂0 − û1 = 0 and δv̂2 + gψ̂3 = f3
(7.9)
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which gives a direct mimetic method. If, instead, we use the conforming
spaces, the optimization problem is find (φh,uh) ∈ Λ0

1(d,K) × Λ1(d,K)
and (ψh,vh) ∈ Λ3(d,K)×Λ2

1(d,K) such that for all (φ̂h, ûh) ∈ Λ0
1(d,K)×

Λ1(d,K) and (ψ̂h, v̂h) ∈ Λ3(d,K)× Λ2
1(d,K)

J (φh,uh;ψh,vh) ≤ J (φ̂h, ûh; ψ̂h, v̂h)

subject to dφ̂h − ûh = 0 and dv̂h + gψ̂h = fh
(7.10)

and we have a conforming mimetic method.
Because Cn−k and Ck and Λk(d,K) and Λn−k(d,K) have different

dimensions, the primal and the dual variables cannot be related by a one-
to-one map. Instead, we minimize their discrepancy in L2 sense and so the
material laws are imposed in a weak sense.

To realize (7.9) we can use any one of the three reconstruction oper-
ators (6.1), (6.3), or (6.6) and obtain a finite-difference like scheme. For
the conforming method (7.10) we cannot use the covolume or the mimetic
reconstruction, but we can use the Whitney map (6.6) to obtain a finite
element-like scheme. We note that with the Whitney map realizations of
(7.9) and (7.5) are completely equivalent.

For further details on mimetic discretizations with weak constitutive
laws and their connection to least-squares minimization principles we refer
to [7, 8, 9]. Examples of this idea in magnetostatics can be found in [14]
and [20].

8. Conclusions. We described a general framework for mimetic dis-
cretizations that uses two basic operators to define all discrete structures.
Scalars and vectors are translated to differential forms and then reduced
to cochains. Combinatorial differentiation and integration operations are
induced by the De Rham map which effects the reduction to cochains. The
natural inner product and wedge product are defined by using a reconstruc-
tion operator that translates cochains back to forms. The inner product
induces an adjoint derivative and a discrete Laplacian. Together with the
combinatorial and natural operations these derived operations comprise the
core of the mimetic framework.

The choice of the natural and derived operations is determined by the
internal consistency of the framework. The natural definitions of the inner
product and the wedge product are not compatible with a natural definition
of the discrete ?. As a result, a consistent discrete framework requires a
choice of its primary operation. We choose the primary operation to be the
natural inner product on real cochain spaces. It would be equally valid to
choose the primary operation to be the discrete ? and its construction to
be the principal computational task.

We choose to base our mimetic framework on the natural inner prod-
uct instead of the ? operation because of the complications that arise in the
construction of the latter and because the inner product is sufficient to in-
duce a combinatorial Hodge theory on cochains. For problems that require
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approximations of material laws we propose to consider constrained opti-
mization formulations that enforce the laws weakly, instead of using their
explicit discretization. In all other cases, our framework offers the choice of
direct and conforming methods. Direct methods are representative of the
type of discretizations that arise in FV and FD methods while conforming
methods are typical of FE. We demonstrated that for regular reconstruc-
tion operators direct and conforming methods are equivalent. This opens
up a possibility to carry out error analysis of direct mimetic methods by
using variational tools from FE. Some recent examples are the analyses in
[12, 13, 19].
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